A strategy for late-stage electrophilic functionalizations of cationic helicenes is exposed. Thanks to strongly acidic conditions that permit reversible electrophilic substitutions, regioselective acylations, sulfonylations or alkylations occur at the extremity(ies) of the helical cores. Extended [5] or [6]helicenes can then be generated from cationic [4]helicenes in successive one-pot elongation processes. Retention of configuration and excellent enantiospecificity (up to 99%) are observed for the helicene growth in the enantiopure series.
  
Novel cationic diaza-, azaoxo-, and dioxo[6]helicenes are readily prepared and functionalized selectively by orthogonal aromatic electrophilic and vicarious nucleophilic substitutions (see scheme). Reductions, cross-coupling, or condensation reactions introduce additional diversity and allow tuning of the absorption properties up to the near-infrared region. The diaza salts can be resolved into single enantiomers.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 13 2018